Search results
Results from the WOW.Com Content Network
T2*-weighted imaging of the brain 26 weeks after subarachnoid hemorrhage, showing hemosiderin deposits as hypointense areas. [1] T 2 *-weighted imaging is an MRI sequence to quantify observable or effective T 2 (T2* or "T2-star"). In this sequence, hemorrhages and hemosiderin deposits become hypointense. [2]
Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields , magnetic field gradients, and radio waves to form images of the organs in the body.
An MRI pulse sequence in magnetic resonance imaging (MRI) is a particular setting of pulse sequences and pulsed field gradients, resulting in a particular image appearance. [ 1 ] A multiparametric MRI is a combination of two or more sequences, and/or including other specialized MRI configurations such as spectroscopy .
Fluid-attenuated inversion recovery (FLAIR) [2] is an inversion-recovery pulse sequence used to nullify the signal from fluids. For example, it can be used in brain imaging to suppress cerebrospinal fluid so as to bring out periventricular hyperintense lesions, such as multiple sclerosis plaques.
For example, imaging of prostate tumors is better accomplished using T2-MRI and DWI-MRI than T2-weighted imaging alone. [7] The number of applications of mpMRI for detecting disease in various organs continues to expand, including liver studies, breast tumors, pancreatic tumors, and assessing the effects of vascular disruption agents on cancer ...
MRI is sensitive for the detection of brain abscess. [25] A number of different imaging modalities or sequences can be used with imaging the nervous system: T 1-weighted (T1W) images: Cerebrospinal fluid is dark. T 1-weighted images are useful for visualizing normal anatomy.
T1 weighted: T1: Measuring spin–lattice relaxation by using a short repetition time (TR) and echo time (TE). Lower signal for more water content, [1] as in edema, tumor, infarction, inflammation, infection, hyperacute or chronic hemorrhage. [2] High signal for fat [1] [2] High signal for paramagnetic substances, such as MRI contrast agents [2]
T1-weighted sequences are used to visualize anatomy and detect the presence of intra-myocardial fat. T1 mapping has also been developed to quantify diffuse myocardial fibrosis. [20] T2-weighted imaging is mainly used to detect myocardial edema which may develop in acute myocarditis or infarction.