Search results
Results from the WOW.Com Content Network
Chaos theory has been used for many years in cryptography. In the past few decades, chaos and nonlinear dynamics have been used in the design of hundreds of cryptographic primitives. These algorithms include image encryption algorithms, hash functions, secure pseudo-random number generators, stream ciphers, watermarking, and steganography. [123]
“Chaos is a fact of life … and a part of dynamical systems theory,” Lin explains to Popular Mechanics in an email. “Some systems are inherently chaotic, while others are not.
The prominent feature of systems with self-adjusting parameters is an ability to avoid chaos. The name for this phenomenon is "Adaptation to the edge of chaos". Adaptation to the edge of chaos refers to the idea that many complex adaptive systems (CASs) seem to intuitively evolve toward a regime near the boundary between chaos and order. [19]
MIT scientists discovered particles transition from chaos to order due to entropy. This breakthrough reveals hidden dynamics of collective motion in systems.
Spontaneous order, also named self-organization in the hard sciences, is the spontaneous emergence of order out of seeming chaos. The term "self-organization" is more often used for physical changes and biological processes, while "spontaneous order" is typically used to describe the emergence of various kinds of social orders in human social networks from the behavior of a combination of self ...
There is the germ of a new notion of order here. This order is not to be understood solely in terms of a regular arrangement of objects (e.g., in rows) or as a regular arrangement of events (e.g., in a series). Rather, a total order is contained, in some implicit sense, in each region of space and time.
An example of an order parameter for crystallization is "bond orientational order" describing the development of preferred directions (the crystallographic axes) in space. For many systems, phases with more structural (e.g. crystalline) order exhibit less entropy than fluid phases under the same thermodynamic conditions.
It was chaos,” said Caroline Edwards, a Capitol Police officer whose testimony was interspersed with footage of her being knocked unconscious by Trump’s supporters and who described slipping ...