Search results
Results from the WOW.Com Content Network
Angles greater than 360° (2 π) or less than 0° may need to be reduced to the range 0°−360° (0–2 π) depending upon the particular calculating machine or program. The cosine of a latitude (declination, ecliptic and Galactic latitude, and altitude) are never negative by definition, since the latitude varies between −90° and +90°.
Right ascension is measured eastward up to 24 h along the celestial equator from the primary direction. Right ascension (abbreviated RA; symbol α) is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the (hour circle of the) point in question above the Earth. [1]
In this case, the longitude is also called the right ascension of the ascending node (RAAN). The angle is measured eastwards (or, as seen from the north, counterclockwise) from the FPA to the node. [2] [3] An alternative is the local time of the ascending node (LTAN), based on the local mean time at which the spacecraft crosses the equator.
The azimuth is the angle formed between a reference direction (in this example north) and a line from the observer to a point of interest projected on the same plane as the reference direction orthogonal to the zenith. An azimuth (/ ˈ æ z ə m ə θ / ⓘ; from Arabic: اَلسُّمُوت, romanized: as-sumūt, lit.
The cosine of the hour angle (cos(h)) is used to calculate the solar zenith angle. At solar noon, h = 0.000 so cos(h) = 1, and before and after solar noon the cos(± h) term = the same value for morning (negative hour angle) or afternoon (positive hour angle), so that the Sun is at the same altitude in the sky at 11:00AM and 1:00PM solar time. [5]
This is the coordinate system normally used to calculate the position of the Sun in terms of solar zenith angle and solar azimuth angle, and the two parameters can be used to depict the Sun path. [3] This calculation is useful in astronomy, navigation, surveying, meteorology, climatology, solar energy, and sundial design.
German equatorial mount. In the German equatorial mount, [4] (sometimes called a "GEM" for short) the primary structure is a T-shape, where the lower bar is the right ascension axis (lower diagonal axis in image), and the upper bar is the declination axis (upper diagonal axis in image).
Alternatively to right ascension, hour angle (abbreviated HA or LHA, local hour angle), a left-handed system, measures the angular distance of an object westward along the celestial equator from the observer's meridian to the hour circle passing through the object. Unlike right ascension, hour angle is always increasing with the rotation of Earth.