Search results
Results from the WOW.Com Content Network
A convective planetary boundary layer is a type of planetary boundary layer where positive buoyancy flux at the surface creates a thermal instability and thus generates additional or even major turbulence. (This is also known as having CAPE or convective available potential energy; see atmospheric convection.) A convective boundary layer is ...
The boundary layer around a human hand, schlieren photograph. The boundary layer is the bright-green border, most visible on the back of the hand (click for high-res image). In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by
The boundary layer is the part of the atmosphere which is closest to the ground. Normally, the sun heats the ground, which in turn heats the air just above it. Thermals form when this warm air rises into the cold air (warm air is less dense than cold air), a process called convection. A convective layer such as this has the potential for cloud ...
The tropopause is the atmospheric boundary layer between the troposphere and the stratosphere, and is located by measuring the changes in temperature relative to increased altitude in the troposphere and in the stratosphere. In the troposphere, the temperature of the air decreases at high altitude, however, in the stratosphere the air ...
A schematic diagram of showing the main processes of coupled (left) and decoupled (right) stratocumulus-topped atmospheric boundary layers: primary circulation (yellow arrows), turbulence eddy cascade (circular arrows confined in an angle with extent proportional to inertial range scaling exponent p), TKE buoyancy production (red B letter of size proportional to strength), sensible and latent ...
The planetary boundary layer is characterized by turbulence during the daytime and by stability during the night. At the top of the planetary boundary layer, there is a stable layer that is frequently termed the inversion layer as temperature tends to increase with height in contrast to much of the troposphere.
There are many regions where an Ekman layer is theoretically plausible; they include the bottom of the atmosphere, near the surface of the earth and ocean, the bottom of the ocean, near the sea floor and at the top of the ocean, near the air-water interface. Different boundary conditions are appropriate for each of these different situations ...
As a result, it is the least-understood part of the atmosphere, resulting in the humorous moniker ignorosphere. [20] [21] The presence of red sprites and blue jets (electrical discharges or lightning within the lower mesosphere), noctilucent clouds, and density shears within this poorly understood layer are of current scientific interest.