Search results
Results from the WOW.Com Content Network
The sodium/glutamate symporter, also known as glutamate permease, is a transmembrane protein family found in bacteria and archaea. These proteins are symporters that are responsible for the sodium-dependent uptake of extracellular glutamate into the cell. They are integral membrane proteins located in the bacterial inner membrane. [1]
Glutamate transporters are a family of neurotransmitter transporter proteins that move glutamate – the principal excitatory neurotransmitter – across a membrane. The family of glutamate transporters is composed of two primary subclasses: the excitatory amino acid transporter ( EAAT ) family and vesicular glutamate transporter ( VGLUT ) family.
The p-aminobenzoyl-glutamate transporter (AbgT) family is a family of transporter proteins belonging to the ion transporter (IT) superfamily. [1] [2] The AbgT family consists of the AbgT (YdaH; TC# 2.A.68.1.1) protein of E. coli and the MtrF drug exporter (TC# 2.A.68.1.2) of Neisseria gonorrhoeae.
The enzyme, found in bacteria, interacts with an extracytoplasmic substrate binding protein and mediates the import of polar amino acids. This entry comprises bacterial enzymes that import Histidine, Arginine, Lysine, Glutamine, Glutamate, Aspartate, ornithine, octopine and nopaline. [24]
The basic fold of the MFS transporter is built around 12, [4] or in some cases, 14 transmembrane helices [5] (TMH), with two 6- (or 7- ) helix bundles formed by the N and C terminal homologous domains [6] of the transporter which are connected by an extended cytoplasmic loop. The two halves of the protein pack against each other in a clam-shell ...
The Amino Acid-Polyamine-Organocation (APC) Family (TC# 2.A.3) of transport proteins includes members that function as solute:cation symporters and solute:solute antiporters.
Glutamate racemase (MurI) provides multiple functions for bacterial cells. MurI is an enzyme which is primarily known for its role in synthesizing bacterial cell walls. While performing the function of cell wall synthesis, MurI also acts as a gyrase inhibitor, preventing gyrase from binding to DNA.
Glutamate + ATP + NH 3 → Glutamine + ADP + phosphate Glutamine synthetase catalyzed reaction. Glutamine synthetase uses ammonia produced by nitrate reduction, amino acid degradation, and photorespiration. [4] The amide group of glutamate is a nitrogen source for the synthesis of glutamine pathway metabolites. [5] Other reactions may take ...