Ads
related to: multiplying exponents with negative bases examples worksheet printable answers
Search results
Results from the WOW.Com Content Network
This definition of exponentiation with negative exponents is the only one that allows extending the identity + = to negative exponents (consider the case =). The same definition applies to invertible elements in a multiplicative monoid , that is, an algebraic structure , with an associative multiplication and a multiplicative identity denoted 1 ...
For example, when computing x 2 k −1, the binary method requires k−1 multiplications and k−1 squarings. However, one could perform k squarings to get x 2 k and then multiply by x −1 to obtain x 2 k −1. To this end we define the signed-digit representation of an integer n in radix b as
A negative base (or negative radix) may be used to construct a non-standard positional numeral system.Like other place-value systems, each position holds multiples of the appropriate power of the system's base; but that base is negative—that is to say, the base b is equal to −r for some natural number r (r ≥ 2).
Since complex numbers can be raised to powers, tetration can be applied to bases of the form z = a + bi (where a and b are real). For example, in n z with z = i, tetration is achieved by using the principal branch of the natural logarithm; using Euler's formula we get the relation:
For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8. Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m).
In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation.Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion.
In binary (base-2) math, multiplication by a power of 2 is merely a register shift operation. Thus, multiplying by 2 is calculated in base-2 by an arithmetic shift. The factor (2 −1) is a right arithmetic shift, a (0) results in no operation (since 2 0 = 1 is the multiplicative identity element), and a (2 1) results in a left arithmetic shift ...
Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.
Ads
related to: multiplying exponents with negative bases examples worksheet printable answers