Search results
Results from the WOW.Com Content Network
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...
Align DNA, RNA, protein, or DNA + protein sequences via a variety of pairwise and multiple sequence alignment algorithms, generate phylogenetic trees to predict evolutionary relationships, explore sequence tracks to view GC content, gap fraction, sequence logos, translation ABI, DNA Multi-Seq, FASTA, GCG Pileup, GenBank, Phred
In DNA double helix, the two strands of DNA are held together by hydrogen bonds. The nucleotides on one strand base pairs with the nucleotide on the other strand. The secondary structure is responsible for the shape that the nucleic acid assumes. The bases in the DNA are classified as purines and pyrimidines. The purines are adenine and guanine ...
The twist is the number of helical turns in the DNA and the writhe is the number of times the double helix crosses over on itself (these are the supercoils). Extra helical twists are positive and lead to positive supercoiling, while subtractive twisting causes negative supercoiling.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The DNA model shown (far right) is a space-filling, or CPK, model of the DNA double helix. Animated molecular models, such as the wire, or skeletal, type shown at the top of this article, allow one to visually explore the three-dimensional (3D) structure of DNA.
Download QR code; Print/export ... (DNA ring) 7 Ribosome 8 Plastoglobulus 9 Starch granule. An example of the template with all diagrams activated. Note: title bars ...
The double helix makes one complete turn about its axis every 10.4–10.5 base pairs in solution. This frequency of twist (known as the helical pitch) depends largely on stacking forces that each base exerts on its neighbours in the chain. Double-helical RNA adopts a conformation similar to the A-form structure.