enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.

  3. Influential observation - Wikipedia

    en.wikipedia.org/wiki/Influential_observation

    An outlier may be defined as a data point that differs markedly from other observations. [6] [7] A high-leverage point are observations made at extreme values of independent variables. [8] Both types of atypical observations will force the regression line to be close to the point. [2]

  4. Box plot - Wikipedia

    en.wikipedia.org/wiki/Box_plot

    Because the whiskers must end at an observed data point, the whisker lengths can look unequal, even though 1.5 IQR is the same for both sides. All other observed data points outside the boundary of the whiskers are plotted as outliers. [10] The outliers can be plotted on the box-plot as a dot, a small circle, a star, etc. (see example below).

  5. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    Box-and-whisker plot with four mild outliers and one extreme outlier. In this chart, outliers are defined as mild above Q3 + 1.5 IQR and extreme above Q3 + 3 IQR. The interquartile range is often used to find outliers in data. Outliers here are defined as observations that fall below Q1 − 1.5 IQR or above Q3 + 1.5 IQR.

  6. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    In data analysis, anomaly detection (also referred to as outlier detection and sometimes as novelty detection) is generally understood to be the identification of rare items, events or observations which deviate significantly from the majority of the data and do not conform to a well defined notion of normal behavior. [1]

  7. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  8. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    Probability plots for distributions other than the normal are computed in exactly the same way. The normal quantile function Φ −1 is simply replaced by the quantile function of the desired distribution. In this way, a probability plot can easily be generated for any distribution for which one has the quantile function.

  9. Peirce's criterion - Wikipedia

    en.wikipedia.org/wiki/Peirce's_criterion

    Peirce's criterion does not depend on observation data (only characteristics of the observation data), therefore making it a highly repeatable process that can be calculated independently of other processes. This feature makes Peirce's criterion for identifying outliers ideal in computer applications because it can be written as a call function.