enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solar constant - Wikipedia

    en.wikipedia.org/wiki/Solar_constant

    Solar irradiance spectrum at top of atmosphere, on a linear scale and plotted against wavenumber. The solar constant (G SC) measures the amount of energy received by a given area one astronomical unit away from the Sun. More specifically, it is a flux density measuring mean solar electromagnetic radiation (total solar irradiance) per unit

  3. Solar irradiance - Wikipedia

    en.wikipedia.org/wiki/Solar_irradiance

    Total solar irradiance (TSI) [21] changes slowly on decadal and longer timescales. The variation during solar cycle 21 was about 0.1% (peak-to-peak). [22] In contrast to older reconstructions, [23] most recent TSI reconstructions point to an increase of only about 0.05% to 0.1% between the 17th century Maunder Minimum and the present.

  4. Air mass (solar energy) - Wikipedia

    en.wikipedia.org/wiki/Air_mass_(solar_energy)

    For example, when the sun is more than about 60° above the horizon (<30°) the solar intensity is about 1000 W/m 2 (from equation I.1 as shown in the above table), whereas when the sun is only 15° above the horizon (=75°) the solar intensity is still about 600 W/m 2 or 60% of its maximum level; and at only 5° above the horizon still 27% of ...

  5. Solar radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    Solar radiation pressure on objects near the Earth may be calculated using the Sun's irradiance at 1 AU, known as the solar constant, or G SC, whose value is set at 1361 W/m 2 as of 2011. [17] All stars have a spectral energy distribution that depends on their surface temperature. The distribution is approximately that of black-body radiation.

  6. Sunlight - Wikipedia

    en.wikipedia.org/wiki/Sunlight

    The solar constant is a measure of flux density, is the amount of incoming solar electromagnetic radiation per unit area that would be incident on a plane perpendicular to the rays, at a distance of one astronomical unit (AU) (roughly the mean distance from the Sun to Earth).

  7. Spectral flux density - Wikipedia

    en.wikipedia.org/wiki/Spectral_flux_density

    The relative spectral flux density is also useful if we wish to compare a source's flux density at one wavelength with the same source's flux density at another wavelength; for example, if we wish to demonstrate how the Sun's spectrum peaks in the visible part of the EM spectrum, a graph of the Sun's relative spectral flux density will suffice.

  8. Solar flux - Wikipedia

    en.wikipedia.org/?title=Solar_flux&redirect=no

    This page was last edited on 31 October 2019, at 18:56 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  9. Solar flux unit - Wikipedia

    en.wikipedia.org/wiki/Solar_flux_unit

    The solar flux unit (sfu) is a convenient measure of spectral flux density often used in solar radio observations, such as the F10.7 solar activity index: [1]. 1 sfu = 10 4 Jy = 10 −22 W⋅m −2 ⋅Hz −1 = 10 −19 erg⋅s −1 ⋅cm −2 ⋅Hz −1.