Search results
Results from the WOW.Com Content Network
The function can be extended to sequences of actions by the following recursive equations: (, [ ]) = (, [,, …,]) = ( (,), [, …,]) A plan for a STRIPS instance is a sequence of actions such that the state that results from executing the actions in order from the initial state satisfies the goal conditions.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
General Problem Solver (GPS) is a computer program created in 1957 by Herbert A. Simon, J. C. Shaw, and Allen Newell (RAND Corporation) intended to work as a universal problem solver machine. In contrast to the former Logic Theorist project, the GPS works with means–ends analysis .
Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields.
Computational thinking (CT) refers to the thought processes involved in formulating problems so their solutions can be represented as computational steps and algorithms. [1] In education, CT is a set of problem-solving methods that involve expressing problems and their solutions in ways that a computer could also execute. [2]
The green and blue boxes combine to form the entire sorting network. For any arbitrary sequence of inputs, it will sort them correctly, with the largest at the bottom. The output of each green or blue box will be a sorted sequence, so the output of each pair of adjacent lists will be bitonic, because the top one is blue and the bottom one is green.
NC = P problem The P vs NP problem is a major unsolved question in computer science that asks whether every problem whose solution can be quickly verified by a computer (NP) can also be quickly solved by a computer (P). This question has profound implications for fields such as cryptography, algorithm design, and computational theory.
A problem solving environment (PSE) is a completed, integrated and specialised computer software for solving one class of problems, combining automated problem-solving methods with human-oriented tools for guiding the problem resolution. A PSE may also assist users in formulating problem resolution.