enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    In fluid dynamics, the Reynolds number (Re) is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. [2] At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent.

  3. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.

  4. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  5. Oseen equations - Wikipedia

    en.wikipedia.org/wiki/Oseen_equations

    A vessel of diameter of 10 µm with a flow of 1 millimetre/second, viscosity of 0.02 poise for blood, density of 1 g/cm 3 and a heart rate of 2 Hz, will have a Reynolds number of 0.005 and a Womersley number of 0.0126. At these small Reynolds and Womersley numbers, the viscous effects of the fluid become predominant.

  6. Prandtl–Batchelor theorem - Wikipedia

    en.wikipedia.org/wiki/Prandtl–Batchelor_theorem

    In fluid dynamics, Prandtl–Batchelor theorem states that if in a two-dimensional laminar flow at high Reynolds number closed streamlines occur, then the vorticity in the closed streamline region must be a constant. A similar statement holds true for axisymmetric flows. The theorem is named after Ludwig Prandtl and George Batchelor.

  7. Arnold's Problems - Wikipedia

    en.wikipedia.org/wiki/Arnold's_Problems

    The problems in Arnold's Problems are each numbered with a year and a sequence number within the year. They include: 1956–1, the napkin folding problem, on whether a paper rectangle can be folded to a shape with larger perimeter than the rectangle; 1972–33, the Arnold conjecture, on the number of fixed points of a Hamiltonian diffeomorphism

  8. AOL Mail

    mail.aol.com

    You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563. Should you need additional assistance we have experts available around the clock at 800-730-2563.

  9. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations. [2]