Search results
Results from the WOW.Com Content Network
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
This temperature change is known as the Joule–Thomson effect, and is exploited in the liquefaction of gases. Inversion temperature depends on the nature of the gas. For a van der Waals gas we can calculate the enthalpy using statistical mechanics as
The Joule–Thomson effect, the temperature change of a gas when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. The Gough–Joule effect or the Gow–Joule effect, which is the tendency of elastomers to contract if heated while they are under tension.
This Thomson effect was predicted and later observed in 1851 by Lord Kelvin (William Thomson). [9] It describes the heating or cooling of a current-carrying conductor with a temperature gradient. If a current density J {\displaystyle \mathbf {J} } is passed through a homogeneous conductor, the Thomson effect predicts a heat production rate per ...
For real gasses, the molecules do interact via attraction or repulsion depending on temperature and pressure, and heating or cooling does occur. This is known as the Joule–Thomson effect. For reference, the Joule–Thomson coefficient μ JT for air at room temperature and sea level is 0.22 °C/bar. [7]
Whereas the Siemens cycle has the gas do external work to reduce its temperature, the Hampson–Linde cycle relies solely on the Joule–Thomson effect; this has the advantage that the cold side of the cooling apparatus needs no moving parts. [1]
Thomson collaborated with Joule, mainly by correspondence, Joule conducting experiments, Thomson analysing the results and suggesting further experiments. The collaboration lasted from 1852 to 1856. Its published results did much to bring about general acceptance of Joule's work and the kinetic theory.
The Joule–Thomson coefficient, = |, is of practical importance because the two end states of a throttling process (=) lie on a constant enthalpy curve. Although ideal gases, for which h = h ( T ) {\displaystyle h=h(T)} , do not change temperature in such a process, real gases do, and it is important in applications to know whether they heat ...