enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydrogen spectral series - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_spectral_series

    Balmer lines are historically referred to as "H-alpha", "H-beta", "H-gamma" and so on, where H is the element hydrogen. [10] Four of the Balmer lines are in the technically "visible" part of the spectrum, with wavelengths longer than 400 nm and shorter than 700 nm. Parts of the Balmer series can be seen in the solar spectrum. H-alpha is an ...

  3. Balmer series - Wikipedia

    en.wikipedia.org/wiki/Balmer_series

    Balmer noticed that a single wavelength had a relation to every line in the hydrogen spectrum that was in the visible light region. That wavelength was 364.506 82 nm . When any integer higher than 2 was squared and then divided by itself squared minus 4, then that number multiplied by 364.506 82 nm (see equation below) gave the wavelength of ...

  4. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    The wavelength (or equivalently, frequency) of the photon is determined by the difference in energy between the two states. These emitted photons form the element's spectrum. The fact that only certain colors appear in an element's atomic emission spectrum means that only certain frequencies of light are emitted.

  5. Rydberg formula - Wikipedia

    en.wikipedia.org/wiki/Rydberg_formula

    In 1890, Rydberg proposed on a formula describing the relation between the wavelengths in spectral lines of alkali metals. [2]: v1:376 He noticed that lines came in series and he found that he could simplify his calculations using the wavenumber (the number of waves occupying the unit length, equal to 1/λ, the inverse of the wavelength) as his unit of measurement.

  6. Spectral line - Wikipedia

    en.wikipedia.org/wiki/Spectral_line

    At shorter wavelengths, which correspond to higher energies, ultraviolet spectral lines include the Lyman series of hydrogen. At the much shorter wavelengths of X-rays , the lines are known as characteristic X-rays because they remain largely unchanged for a given chemical element, independent of their chemical environment.

  7. Hydrogen-alpha - Wikipedia

    en.wikipedia.org/wiki/Hydrogen-alpha

    Hydrogen-alpha, typically shortened to H-alpha or Hα, is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28 nm in air and 656.46 nm in vacuum. It is the first spectral line in the Balmer series and is emitted when an electron falls from a hydrogen atom's third- to second-lowest energy level.

  8. Lyman-alpha - Wikipedia

    en.wikipedia.org/wiki/Lyman-alpha

    It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state (n = 1), where n is the principal quantum number. In hydrogen, its wavelength of 1215.67 angstroms (121.567 nm or 1.215 67 × 10 −7 m), corresponding to a frequency of about 2.47 × 10 15 Hz, places Lyman-alpha in the ultraviolet (UV) part of the ...

  9. Lyman series - Wikipedia

    en.wikipedia.org/wiki/Lyman_series

    Nobody could predict the wavelengths of the hydrogen lines until 1885 when the Balmer formula gave an empirical formula for the visible hydrogen spectrum. Within five years Johannes Rydberg came up with an empirical formula that solved the problem, presented first in 1888 and final form in 1890.