enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    Artificial neural networks (ANNs) are models created using machine learning to perform a number of tasks.Their creation was inspired by biological neural circuitry. [1] [a] While some of the computational implementations ANNs relate to earlier discoveries in mathematics, the first implementation of ANNs was by psychologist Frank Rosenblatt, who developed the perceptron. [1]

  3. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  4. File:Neural networks applied to signal processing. (IA ...

    en.wikipedia.org/wiki/File:Neural_networks...

    Original file (641 × 839 pixels, file size: 5.6 MB, MIME type: application/pdf, 118 pages) This is a file from the Wikimedia Commons . Information from its description page there is shown below.

  5. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models . While individual neurons are simple, many of them together in a network can perform complex tasks.

  6. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent. Such networks are commonly depicted in the manner shown at the top of the figure, where is shown as dependent upon itself. However, an implied temporal dependence is not shown.

  7. Neuroevolution - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution

    Most neural networks use gradient descent rather than neuroevolution. However, around 2017 researchers at Uber stated they had found that simple structural neuroevolution algorithms were competitive with sophisticated modern industry-standard gradient-descent deep learning algorithms, in part because neuroevolution was found to be less likely to get stuck in local minima.

  8. Neural tangent kernel - Wikipedia

    en.wikipedia.org/wiki/Neural_tangent_kernel

    The NTK can be studied for various ANN architectures, [2] in particular convolutional neural networks (CNNs), [19] recurrent neural networks (RNNs) and transformers. [20] In such settings, the large-width limit corresponds to letting the number of parameters grow, while keeping the number of layers fixed: for CNNs, this involves letting the number of channels grow.

  9. Modular neural network - Wikipedia

    en.wikipedia.org/wiki/Modular_neural_network

    A modular neural network is an artificial neural network characterized by a series of independent neural networks moderated by some intermediary. Each independent neural network serves as a module and operates on separate inputs to accomplish some subtask of the task the network hopes to perform. [ 1 ]