enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Category:Geometry in computer vision - Wikipedia

    en.wikipedia.org/wiki/Category:Geometry_in...

    Geometry in computer vision is a sub-field within computer vision dealing with geometric relations between the 3D world and its projection into 2D image, typically by means of a pinhole camera. Common problems in this field relate to Reconstruction of geometric structures (for example, points or lines) in the 3D world based on measurements in ...

  3. Image rectification - Wikipedia

    en.wikipedia.org/wiki/Image_rectification

    If the images to be rectified are taken from camera pairs without geometric distortion, this calculation can easily be made with a linear transformation.X & Y rotation puts the images on the same plane, scaling makes the image frames be the same size and Z rotation & skew adjustments make the image pixel rows directly line up [citation needed].

  4. Triangulation (computer vision) - Wikipedia

    en.wikipedia.org/.../Triangulation_(computer_vision)

    In computer vision, triangulation refers to the process of determining a point in 3D space given its projections onto two, or more, images. In order to solve this problem it is necessary to know the parameters of the camera projection function from 3D to 2D for the cameras involved, in the simplest case represented by the camera matrices .

  5. Homography (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Homography_(computer_vision)

    Geometrical setup for homography: stereo cameras O 1 and O 2 both pointed at X in epipolar geometry. Drawing from Neue Konstruktionen der Perspektive und Photogrammetrie by Hermann Guido Hauck (1845 — 1905) In the field of computer vision, any two images of the same planar surface in space are related by a homography (assuming a pinhole ...

  6. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    Formulas involving homogeneous coordinates are often simpler and more symmetric than their Cartesian counterparts. Homogeneous coordinates have a range of applications, including computer graphics and 3D computer vision, where they allow affine transformations and, in general, projective transformations to be easily represented by a matrix.

  7. Image registration - Wikipedia

    en.wikipedia.org/wiki/Image_registration

    Linear transformations are global in nature, thus, they cannot model local geometric differences between images. [3] The second category of transformations allow 'elastic' or 'nonrigid' transformations. These transformations are capable of locally warping the target image to align with the reference image.

  8. Pose (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Pose_(computer_vision)

    Analytic or geometric methods: Given that the image sensor (camera) is calibrated and the mapping from 3D points in the scene and 2D points in the image is known. If also the geometry of the object is known, it means that the projected image of the object on the camera image is a well-known function of the object's pose.

  9. Geometric feature learning - Wikipedia

    en.wikipedia.org/wiki/Geometric_feature_learning

    Geometric feature learning is a technique combining machine learning and computer vision to solve visual tasks. The main goal of this method is to find a set of representative features of geometric form to represent an object by collecting geometric features from images and learning them using efficient machine learning methods.