Search results
Results from the WOW.Com Content Network
While the electron has a negative electric charge, the positron has a positive electric charge, and is produced naturally in certain types of radioactive decay. The opposite is also true: the antiparticle of the positron is the electron. Some particles, such as the photon, are their own antiparticle. Otherwise, for each pair of antiparticle ...
The antiproton, p, (pronounced p-bar) is the antiparticle of the proton.Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy.
Antimatter particles carry the same charge as matter particles, but of opposite sign. That is, an antiproton is negatively charged and an antielectron is positively charged. Neutrons do not carry a net charge, but their constituent quarks do.
The neutrino [a] was postulated first by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum ().In contrast to Niels Bohr, who proposed a statistical version of the conservation laws to explain the observed continuous energy spectra in beta decay, Pauli hypothesized an undetected particle that he called a "neutron", using the same -on ending ...
The antineutron is the antiparticle of the neutron with symbol n. It differs from the neutron only in that some of its properties have equal magnitude but opposite sign.It has the same mass as the neutron, and no net electric charge, but has opposite baryon number (+1 for neutron, −1 for the antineutron).
Antiparticle: Muon antineutrino (ν μ) Theorized (1940s) Discovered: Leon Lederman, Melvin Schwartz and Jack Steinberger (1962) Mass: Small but non-zero. See neutrino mass. Electric charge: 0 e: Color charge: No: Spin 1 / 2 Weak isospin 1 / 2 Weak hypercharge: −1: Chirality: left-handed (for right-handed neutrinos, see ...
For example, the antiparticle of the electron is the positron. The electron has a negative electric charge, the positron has a positive charge. These antiparticles can theoretically form a corresponding form of matter called antimatter. Some particles, such as the photon, are their own antiparticle.
The positron or antielectron is the particle with an electric charge of +1e, a spin of 1/2 (the same as the electron), and the same mass as an electron. It is the antiparticle (antimatter counterpart) of the electron. When a positron collides with an electron, annihilation occurs.