Search results
Results from the WOW.Com Content Network
Strange matter: A type of quark matter that may exist inside some neutron stars close to the Tolman–Oppenheimer–Volkoff limit (approximately 2–3 solar masses). May be stable at lower energy states once formed. Quark matter: Hypothetical phases of matter whose degrees of freedom include quarks and gluons Color-glass condensate
In regular cold matter, quarks, fundamental particles of nuclear matter, are confined by the strong force into hadrons that consist of 2–4 quarks, such as protons and neutrons. Quark matter or quantum chromodynamical (QCD) matter is a group of phases where the strong force is overcome and quarks are deconfined and free to move.
Sometimes in the field of physics "matter" is simply equated with particles that exhibit rest mass (i.e., that cannot travel at the speed of light), such as quarks and leptons. However, in both physics and chemistry, matter exhibits both wave-like and particle-like properties, the so-called wave–particle duality. [10] [11] [12]
GCSE Bitesize was launched in January 1998, covering seven subjects. For each subject, a one- or two-hour long TV programme would be broadcast overnight in the BBC Learning Zone block, and supporting material was available in books and on the BBC website. At the time, only around 9% of UK households had access to the internet at home.
Strangeness is an excited state of matter and its decay is governed by CKM mixing. The terms strange and strangeness predate the discovery of the quark, and were adopted after its discovery in order to preserve the continuity of the phrase: strangeness of particles as −1 and anti-particles as +1, per the original definition.
Physical properties are often characterized as intensive and extensive properties. An intensive property does not depend on the size or extent of the system, nor on the amount of matter in the object, while an extensive property shows an additive relationship.
Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases, that arise from electromagnetic forces between atoms and electrons. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong ...
The reason is the extremely low cross section for the interaction of gravitons with matter. For example, a detector with the mass of Jupiter and 100% efficiency, placed in close orbit around a neutron star , would only be expected to observe one graviton every 10 years, even under the most favorable conditions.