enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies ...

  3. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.

  4. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    The ratio estimates are asymmetrical and symmetrical tests such as the t test should not be used to generate confidence intervals. The bias is of the order O(1/n) (see big O notation) so as the sample size (n) increases, the bias will asymptotically approach 0. Therefore, the estimator is approximately unbiased for large sample sizes.

  5. Estimator - Wikipedia

    en.wikipedia.org/wiki/Estimator

    In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...

  6. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample covariance relies on the difference between each observation and the sample mean, but the sample mean is slightly correlated with each observation since it is defined in terms of all observations.

  7. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    In the general case, the unbiased estimate of the covariance matrix provides an acceptable estimate when the data vectors in the observed data set are all complete: that is they contain no missing elements. One approach to estimating the covariance matrix is to treat the estimation of each variance or pairwise covariance separately, and to use ...

  8. Interval estimation - Wikipedia

    en.wikipedia.org/wiki/Interval_estimation

    A prediction interval estimates the interval containing future samples with some confidence, γ. Prediction intervals can be used for both Bayesian and frequentist contexts. These intervals are typically used in regression data sets, but prediction intervals are not used for extrapolation beyond the previous data's experimentally controlled ...

  9. Sampling distribution - Wikipedia

    en.wikipedia.org/wiki/Sampling_distribution

    In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.For an arbitrarily large number of samples where each sample, involving multiple observations (data points), is separately used to compute one value of a statistic (for example, the sample mean or sample variance) per sample, the sampling distribution is ...