Search results
Results from the WOW.Com Content Network
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. [1] [2]: 183–184 Spin is quantized, and accurate models for the interaction with spin require relativistic quantum mechanics or quantum field theory.
The atom would then be pulled toward or away from the stronger magnetic field a specific amount, depending on the value of the valence electron's spin. When the spin of the electron is + + 1 / 2 the atom moves away from the stronger field, and when the spin is − + 1 / 2 the atom moves toward it. Thus the beam of silver atoms is ...
The spin magnetic moment of the electron is =, where is the spin (or intrinsic angular-momentum) vector, is the Bohr magneton, and = is the electron-spin g-factor. Here μ {\displaystyle {\boldsymbol {\mu }}} is a negative constant multiplied by the spin , so the spin magnetic moment is antiparallel to the spin.
An example for such a particle [9] is the spin 1 / 2 companion to spin 3 / 2 in the D (½,1) ⊕ D (1,½) representation space of the Lorentz group. This particle has been shown to be characterized by g = − + 2 / 3 and consequently to behave as a truly quadratic fermion.
In both cases a bond is created by the formation of an electron pair. Because electrons are fermions, the Pauli exclusion principle forbids these particles from having all the same quantum numbers. Therefore, for two electrons to occupy the same orbital, and thereby have the same orbital quantum number, they must have different spin quantum ...
If one measures the spin along a vertical axis, electrons are described as "spin up" or "spin down", based on the magnetic moment pointing up or down, respectively. To mathematically describe the experiment with spin + particles, it is easiest to use Dirac's bra–ket notation. As the particles pass through the Stern–Gerlach device, they are ...
Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space.This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession.
In particle physics, spin polarization is the degree to which the spin, i.e., the intrinsic angular momentum of elementary particles, is aligned with a given direction. [1] This property may pertain to the spin, hence to the magnetic moment , of conduction electrons in ferromagnetic metals, such as iron , giving rise to spin-polarized currents .