enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Luhn mod N algorithm - Wikipedia

    en.wikipedia.org/wiki/Luhn_mod_N_algorithm

    The Luhn mod N algorithm generates a check digit (more precisely, a check character) within the same range of valid characters as the input string. For example, if the algorithm is applied to a string of lower-case letters (a to z), the check character will also be a lower-case letter.

  3. Letter frequency - Wikipedia

    en.wikipedia.org/wiki/Letter_frequency

    The California Job Case was a compartmentalized box for printing in the 19th century, sizes corresponding to the commonality of letters. The frequency of letters in text has been studied for use in cryptanalysis, and frequency analysis in particular, dating back to the Arab mathematician al-Kindi (c. AD 801–873 ), who formally developed the method (the ciphers breakable by this technique go ...

  4. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    Huffman tree generated from the exact frequencies of the text "this is an example of a huffman tree". Encoding the sentence with this code requires 135 (or 147) bits, as opposed to 288 (or 180) bits if 36 characters of 8 (or 5) bits were used (This assumes that the code tree structure is known to the decoder and thus does not need to be counted as part of the transmitted information).

  5. n-gram - Wikipedia

    en.wikipedia.org/wiki/N-gram

    Figure 1 shows several example sequences and the corresponding 1-gram, 2-gram and 3-gram sequences. Here are further examples; these are word-level 3-grams and 4-grams (and counts of the number of times they appeared) from the Google n-gram corpus. [4] 3-grams ceramics collectables collectibles (55) ceramics collectables fine (130)

  6. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    The bag-of-words model is commonly used in methods of document classification where, for example, the (frequency of) occurrence of each word is used as a feature for training a classifier. [1] It has also been used for computer vision. [2]

  7. Bigram - Wikipedia

    en.wikipedia.org/wiki/Bigram

    A bigram or digram is a sequence of two adjacent elements from a string of tokens, which are typically letters, syllables, or words.A bigram is an n-gram for n=2.. The frequency distribution of every bigram in a string is commonly used for simple statistical analysis of text in many applications, including in computational linguistics, cryptography, and speech recognition.

  8. Index of coincidence - Wikipedia

    en.wikipedia.org/wiki/Index_of_coincidence

    Each of the n i occurrences of the i-th letter matches each of the remaining n i − 1 occurrences of the same letter. There are a total of N(N − 1) letter pairs in the entire text, and 1/c is the probability of a match for each pair, assuming a uniform random distribution of the characters (the "null model"; see below). Thus, this formula ...

  9. String-searching algorithm - Wikipedia

    en.wikipedia.org/wiki/String-searching_algorithm

    A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.