Search results
Results from the WOW.Com Content Network
A function pointer, also called a subroutine pointer or procedure pointer, is a pointer referencing executable code, rather than data. Dereferencing the function pointer yields the referenced function , which can be invoked and passed arguments just as in a normal function call.
Differences between C and C++ linkage and calling conventions can also have subtle implications for code that uses function pointers. Some compilers will produce non-working code if a function pointer declared extern "C" points to a C++ function that is not declared extern "C". [22] For example, the following code:
The function pointer is then simply the address of the trampoline. This avoids having to use "fat" function pointers for nested functions which carry both the code address and the static link. [ 8 ] [ 9 ] [ 10 ] This, however, conflicts with the desire to make the stack non-executable for security reasons.
In some languages, a pointer can reference executable code, i.e., it can point to a function, method, or procedure. A function pointer will store the address of a function to be invoked. While this facility can be used to call functions dynamically, it is often a favorite technique of virus and other malicious software writers.
The d-pointer pattern is one of the implementations of the opaque pointer. It is commonly used in C++ classes due to its advantages (noted below). A d-pointer is a private data member of the class that points to an instance of a structure. This method allows class declarations to omit private data members, except for the d-pointer itself. [6]
Instances of such classes are called functors or function objects. Functors allow the behavior of the associated function to be parameterized (e.g. through arguments passed to the functor's constructor) and can be used to keep associated per-functor state information along with the function. Since both functors and function pointers can be ...
The C99 Language Specification ( ISO9899:1999 ) has the following warning in section 6.3.2.3 Pointers : "A pointer to an object or incomplete type may be converted to a pointer to a different object or incomplete type. If the resulting pointer is not correctly aligned for the pointed-to type, the behavior is undefined."
In MC++, there were two different types of pointers: __nogc pointers were normal C++ pointers, while __gc pointers worked on .NET reference types. In C++/CLI, however, the only type of pointer is the normal C++ pointer, while the .NET reference types are accessed through a "handle", with the new syntax ClassName ^ (instead of ClassName *). This ...