Search results
Results from the WOW.Com Content Network
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
Whether considering the intensity or grayscale values of the image or various dimensions of color, the co-occurrence matrix can measure the texture of the image. Because co-occurrence matrices are typically large and sparse, various metrics of the matrix are often taken to get a more useful set of features.
The algorithm can also be used to obtain an approximation of the Laplacian of Gaussian when the ratio of size 2 to size 1 is roughly equal to 1.6. [3] The Laplacian of Gaussian is useful for detecting edges that appear at various image scales or degrees of image focus.
If just 2 columns are being swapped within 1 table, then cut/paste editing (of those column entries) is typically faster than column-prefixing, sorting and de-prefixing. Another alternative is to copy the entire table from the displayed page, paste the text into a spreadsheet, move the columns as you will.
For example, if applied to 8-bit image displayed with 8-bit gray-scale palette it will further reduce color depth (number of unique shades of gray) of the image. Histogram equalization will work the best when applied to images with much higher color depth than palette size, like continuous data or 16-bit gray-scale images.
Equivalently, the size of the map selected should be equal to or larger than the ratio of source colors to target colors. For example, when quantizing a 24 bpp image to 15 bpp (256 colors per channel to 32 colors per channel), the smallest map one would choose would be 4×2, for the ratio of 8 (256:32).
Erosion (usually represented by ⊖) is one of two fundamental operations (the other being dilation) in morphological image processing from which all other morphological operations are based. It was originally defined for binary images , later being extended to grayscale images, and subsequently to complete lattices .
Here is an example of color channel splitting of a full RGB color image. The column at left shows the isolated color channels in natural colors, while at right there are their grayscale equivalences: Composition of RGB from three grayscale images. The reverse is also possible: to build a full-color image from their separate grayscale channels.