Search results
Results from the WOW.Com Content Network
How much gas is present could be specified by giving the mass instead of the chemical amount of gas. Therefore, an alternative form of the ideal gas law may be useful. The chemical amount, n (in moles), is equal to total mass of the gas (m) (in kilograms) divided by the molar mass, M (in kilograms per mole): =.
gas molecules only interact with adjacent layers; and; the Langmuir theory can be applied to each layer. the enthalpy of adsorption for the first layer is constant and greater than the second (and higher). the enthalpy of adsorption for the second (and higher) layers is the same as the enthalpy of liquefaction. The resulting BET equation is
The surface containing the adsorbing sites is a perfectly flat plane with no corrugations (assume the surface is homogeneous). However, chemically heterogeneous surfaces can be considered to be homogeneous if the adsorbate is bound to only one type of functional groups on the surface. The adsorbing gas adsorbs into an immobile state.
The Hertz–Knudsen equation describes the non-dissociative adsorption of a gas molecule on a surface by expressing the variation of the number of molecules impacting on the surfaces per unit of time as a function of the pressure of the gas and other parameters which characterise both the gas phase molecule and the surface: [1] [2]
Figures A and C show the surface calculated from the van der Waals equation. Note that whereas the ideal gas surface is relatively uniform, the van der Waals surface has a distinctive "fold". This fold develops from a critical point defined by specific values of pressure, temperature, and molar volume.
Desorption is the physical process where adsorbed atoms or molecules are released from a surface into the surrounding vacuum or fluid. This occurs when a molecule gains enough energy to overcome the activation barrier and the binding energy that keep it attached to the surface.
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.
The Gibbs adsorption isotherm for multicomponent systems is an equation used to relate the changes in concentration of a component in contact with a surface with changes in the surface tension, which results in a corresponding change in surface energy. For a binary system, the Gibbs adsorption equation in terms of surface excess is