Search results
Results from the WOW.Com Content Network
A composite number with two prime factors is a semiprime or 2-almost prime (the factors need not be distinct, hence squares of primes are included). A composite number with three distinct prime factors is a sphenic number. In some applications, it is necessary to differentiate between composite numbers with an odd number of distinct prime ...
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
a decagonal number. [2] with an aliquot sum of 46; within an aliquot sequence of seven composite numbers { 52, 46, 26, 16, 15, 9, 4, 3, 1, 0 } to the prime in the 3-aliquot tree. This sequence does not extend above 52 because it is, an untouchable number, since it is never the sum of proper divisors of any number. It is the first untouchable ...
Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is ...
The even numbers form an ideal in the ring of integers, [13] but the odd numbers do not—this is clear from the fact that the identity element for addition, zero, is an element of the even numbers only. An integer is even if it is congruent to 0 modulo this ideal, in other words if it is congruent to 0 modulo 2, and odd if it is congruent to 1 ...
For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4) .
a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.
Every integer greater than 20161 can be written as the sum of two abundant numbers. The largest even number that is not the sum of two abundant numbers is 46. [5] An abundant number which is not a semiperfect number is called a weird number. [6] An abundant number with abundance 1 is called a quasiperfect number, although none have yet been found.