Search results
Results from the WOW.Com Content Network
The Magnus effect is a phenomenon that occurs when a spinning object is moving through a fluid or gas (air). A lift force acts on the spinning object and its path may be deflected in a manner not present when it is not spinning. The strength and direction of the Magnus effect is dependent on the speed and direction of the rotation of the object ...
The flow around a lifting airfoil is a fluid mechanics phenomenon that can be understood on essentially two levels: There are mathematical theories, which are based on established laws of physics and represent the flow accurately, but which require solving equations.
The Magnus effect, depicted with a backspinning cylinder in an airstream. The arrow represents the resulting sideways force that can be used to help propel a ship. The curly flow lines represent a turbulent wake. The airflow is deflected in the direction of spin. A rotor or Flettner ship is designed to use the Magnus effect for propulsion. [3]
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
In sports like tennis or volleyball, the player can use the Magnus effect to control the ball's trajectory (e.g. via topspin or backspin) during flight. In golf, the effect is responsible for slicing and hooking which are usually a detriment to the golfer, but also helps with increasing the range of a drive and other shots.
Magnus effect (fluid dynamics) Malmquist effect (astronomy) Malter effect (physics) Mandela effect (psychology) (paranormal) Marangoni effect (fluid dynamics) (fluid mechanics) (physical phenomena) Marchywka effect (electrochemistry) (ultraviolet sensor production) Mark Twain effect (economics and finance) (stock market)
The Buckau, the first vehicle to be propelled by a Flettner rotor. A Flettner rotor is a smooth cylinder with disc end plates which is spun along its long axis and, as air passes at right angles across it, the Magnus effect causes an aerodynamic force to be generated in the direction perpendicular to both the long axis and the direction of airflow. [1]
1643 – Evangelista Torricelli provides a relation between the speed of fluid flowing from an orifice to the height of fluid above the opening, given by Torricelli's law. He also builds a mercury barometer and does a series of experiments on vacuum. [1] 1650 – Otto von Guericke invents the first vacuum pump. [1]