enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...

  3. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...

  4. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Δh = The head loss due to pipe friction over the given length of pipe (SI units: m); [b] g = The local acceleration due to gravity (m/s 2). It is useful to present head loss per length of pipe (dimensionless): = =, where L is the pipe length (m).

  5. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    Jean Le Rond d'Alembert, Nouvelles expériences sur la résistance des fluides, 1777. In fluid dynamics, friction loss (or frictional loss) is the head loss that occurs in a containment such as a pipe or duct due to the effect of the fluid's viscosity near the surface of the containment.

  6. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    When the pipes have certain roughness <, this factor must be taken in account when the Fanning friction factor is calculated. The relationship between pipe roughness and Fanning friction factor was developed by Haaland (1983) under flow conditions of 4 ⋅ 10 4 < R e < 10 7 {\displaystyle 4\centerdot 10^{4}<Re<10^{7}}

  7. Reynolds analogy - Wikipedia

    en.wikipedia.org/wiki/Reynolds_analogy

    In 2008, the qualitative form of validity of Reynolds' analogy was re-visited for laminar flow of incompressible fluid with variable dynamic viscosity (μ). [2] It was shown that the inverse dependence of Reynolds number ( Re ) and skin friction coefficient( c f ) is the basis for validity of the Reynolds’ analogy, in laminar convective flows ...

  8. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    Once the friction factors of the pipes are obtained (or calculated from pipe friction laws such as the Darcy-Weisbach equation), we can consider how to calculate the flow rates and head losses on the network. Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the ...

  9. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Darcy-Weisbach equation was difficult to use because the friction factor was difficult to estimate. [7] In 1906, Hazen and Williams provided an empirical formula that was easy to use. The general form of the equation relates the mean velocity of water in a pipe with the geometric properties of the pipe and the slope of the energy line.