Search results
Results from the WOW.Com Content Network
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology.It defines a large number of terms relating to algorithms and data structures.
The underlying hypothesis of this approach is that, words are semantically similar if they appear in similar documents, with in similar context windows, or in similar syntactic contexts. [3] Each occurrence of a target word in a corpus is represented as a context vector. These context vectors can be either first-order vectors, which directly ...
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
If gcd(a, b) = 1, then a and b are said to be coprime (or relatively prime). [4] This property does not imply that a or b are themselves prime numbers. [5] For example, 6 and 35 factor as 6 = 2 × 3 and 35 = 5 × 7, so they are not prime, but their prime factors are different, so 6 and 35 are coprime, with no common factors other than 1.
Integers in the same congruence class a ≡ b (mod n) satisfy gcd(a, n) = gcd(b, n); hence one is coprime to n if and only if the other is. Thus the notion of congruence classes modulo n that are coprime to n is well-defined. Since gcd(a, n) = 1 and gcd(b, n) = 1 implies gcd(ab, n) = 1, the set of classes coprime to n is closed under ...
Therefore, equalities like d = gcd(p, q) or gcd(p, q) = gcd(r, s) are common abuses of notation which should be read "d is a GCD of p and q" and "p and q have the same set of GCDs as r and s". In particular, gcd( p , q ) = 1 means that the invertible constants are the only common divisors.
The referential function: corresponds to the factor of Context and describes a situation, object or mental state. The descriptive statements of the referential function can consist of both definite descriptions and deictic words, e.g. "The autumn leaves have all fallen now."
A context-sensitive grammar (CSG) is a formal grammar in which the left-hand sides and right-hand sides of any production rules may be surrounded by a context of terminal and nonterminal symbols. Context-sensitive grammars are more general than context-free grammars , in the sense that there are languages that can be described by a CSG but not ...