enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Abelian group - Wikipedia

    en.wikipedia.org/wiki/Abelian_group

    Every subgroup of an abelian group is normal, so each subgroup gives rise to a quotient group. Subgroups, quotients, and direct sums of abelian groups are again abelian. The finite simple abelian groups are exactly the cyclic groups of prime order. [6]: 32 The concepts of abelian group and -module agree.

  3. Metabelian group - Wikipedia

    en.wikipedia.org/wiki/Metabelian_group

    The translations of the plane form an abelian normal subgroup of the group, and the corresponding quotient is the circle group. The finite Heisenberg group H 3, p of order p 3 is metabelian. The same is true for any Heisenberg group defined over a ring (group of upper-triangular 3 × 3 matrices with entries in a commutative ring ).

  4. Direct product of groups - Wikipedia

    en.wikipedia.org/wiki/Direct_product_of_groups

    If A and B are normal, then A × B is a normal subgroup of G × H. Moreover, the quotient of the direct products is isomorphic to the direct product of the quotients: (G × H) / (A × B) ≅ (G / A) × (H / B). Note that it is not true in general that every subgroup of G × H is the product of a subgroup of G with a subgroup of H.

  5. Normal subgroup - Wikipedia

    en.wikipedia.org/wiki/Normal_subgroup

    A normal subgroup of a normal subgroup of a group need not be normal in the group. That is, normality is not a transitive relation. The smallest group exhibiting this phenomenon is the dihedral group of order 8. [15] However, a characteristic subgroup of a normal subgroup is normal. [16] A group in which normality is transitive is called a T ...

  6. Pure subgroup - Wikipedia

    en.wikipedia.org/wiki/Pure_subgroup

    The torsion subgroup of an abelian group is pure. The directed union of pure subgroups is a pure subgroup. Since in a finitely generated abelian group the torsion subgroup is a direct summand, one might ask if the torsion subgroup is always a direct summand of an abelian group. It turns out that it is not always a summand, but it is a pure ...

  7. Basic subgroup - Wikipedia

    en.wikipedia.org/wiki/Basic_subgroup

    In abstract algebra, a basic subgroup is a subgroup of an abelian group which is a direct sum of cyclic subgroups and satisfies further technical conditions. This notion was introduced by L. Ya. Kulikov (for p-groups) and by László Fuchs (in general) in an attempt to formulate classification theory of infinite abelian groups that goes beyond the Prüfer theorems.

  8. Torsion subgroup - Wikipedia

    en.wikipedia.org/wiki/Torsion_subgroup

    An abelian group A is torsion-free if and only if it is flat as a Z-module, which means that whenever C is a subgroup of some abelian group B, then the natural map from the tensor product C ⊗ A to B ⊗ A is injective. Tensoring an abelian group A with Q (or any divisible group) kills torsion. That is, if T is a torsion group then T ⊗ Q = 0.

  9. Elementary abelian group - Wikipedia

    en.wikipedia.org/wiki/Elementary_abelian_group

    In mathematics, specifically in group theory, an elementary abelian group is an abelian group in which all elements other than the identity have the same order. This common order must be a prime number , and the elementary abelian groups in which the common order is p are a particular kind of p -group .