Search results
Results from the WOW.Com Content Network
In first-order logic with equality, counting quantifiers can be defined in terms of ordinary quantifiers, so in this context they are a notational shorthand. However, they are interesting in the context of logics such as two-variable logic with counting that restrict the number of variables in formulas. Also, generalized counting quantifiers ...
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
For example, consider the following expression in which both variables are bound by logical quantifiers: ∀ y ∃ x ( x = y ) . {\displaystyle \forall y\,\exists x\,\left(x={\sqrt {y}}\right).} This expression evaluates to false if the domain of x {\displaystyle x} and y {\displaystyle y} is the real numbers, but true if the domain is the ...
Term logic treated All, Some and No in the 4th century BC, in an account also touching on the alethic modalities. In 1827, George Bentham published his Outline of a New System of Logic: With a Critical Examination of Dr. Whately's Elements of Logic, describing the principle of the quantifier, but the book was not widely circulated. [12]
Replacement: (i) the formula to be replaced must be within a tautology, i.e. logically equivalent ( connected by ≡ or ↔) to the formula that replaces it, and (ii) unlike substitution its permissible for the replacement to occur only in one place (i.e. for one formula). Example: Use this set of formula schemas/equivalences: ( (a ∨ 0) ≡ a ).
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or bidirectional implication or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
Free and bound variables of a formula need not be disjoint sets: in the formula P(x) → ∀x Q(x), the first occurrence of x, as argument of P, is free while the second one, as argument of Q, is bound. A formula in first-order logic with no free variable occurrences is called a first-order sentence.
Formulas and are logically equivalent if and only if the statement of their material equivalence is a tautology. [ 2 ] The material equivalence of p {\displaystyle p} and q {\displaystyle q} (often written as p ↔ q {\displaystyle p\leftrightarrow q} ) is itself another statement in the same object language as p {\displaystyle p} and q ...