Search results
Results from the WOW.Com Content Network
Trigonometric identities may help simplify the answer. [ 1 ] [ 2 ] Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.
For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x 2 – 4. Factorization is not usually considered meaningful within number systems possessing division , such as the real or complex numbers , since any x {\displaystyle x} can be trivially written as ( x y ) × ( 1 / y ) {\displaystyle ...
In the second step, they were divided by 3. The final result, 4 / 3 , is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:
A polynomial decomposition may enable more efficient evaluation of a polynomial. For example, + + + + + + + = () (+ +) can be calculated with 3 multiplications and 3 additions using the decomposition, while Horner's method would require 7 multiplications and 8 additions.
Four powers of 10 spanning a range of three decades: 1, 10, 100, 1000 (10 0, 10 1, 10 2, 10 3) Four grids spanning three decades of resolution: One thousand 0.001s, one-hundred 0.01s, ten 0.1s, one 1. One decade (symbol dec [1]) is a unit for measuring ratios on a logarithmic scale, with one decade corresponding to a ratio of 10 between two ...
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...