Search results
Results from the WOW.Com Content Network
Rules of inference are syntactical transform rules which one can use to infer a conclusion from a premise to create an argument. A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound.
Disjunction introduction or addition (also called or introduction) [1] [2] [3] is a rule of inference of propositional logic and almost every other deduction system. The rule makes it possible to introduce disjunctions to logical proofs. It is the inference that if P is true, then P or Q must be true. An example in English: Socrates is a man.
The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts. The rule makes it possible to eliminate a disjunction from a logical proof. It is the rule that
SageMath (previously Sage or SAGE, "System for Algebra and Geometry Experimentation" [3]) is a computer algebra system (CAS) with features covering many aspects of mathematics, including algebra, combinatorics, graph theory, group theory, differentiable manifolds, numerical analysis, number theory, calculus and statistics.
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations .
The role of disjunction in these cases has been analyzed using nonclassical logics such as alternative semantics and inquisitive semantics, which have also been adopted to explain the free choice and simplification inferences. [1] In English, as in many other languages, disjunction is expressed by a coordinating conjunction.
The introduction rules of natural deduction are viewed as right rules in the sequent calculus, and are structurally very similar. The elimination rules on the other hand turn into left rules in the sequent calculus. To give an example, consider disjunction; the right rules are familiar:
Intuitionistic logic has found practical use in mathematics despite the challenges presented by the inability to utilize these rules. One reason for this is that its restrictions produce proofs that have the disjunction and existence properties, making it also suitable for other forms of mathematical constructivism.