Search results
Results from the WOW.Com Content Network
A projective plane of order N is a Steiner S(2, N + 1, N 2 + N + 1) system (see Steiner system). Conversely, one can prove that all Steiner systems of this form (λ = 2) are projective planes. The number of mutually orthogonal Latin squares of order N is at most N − 1. N − 1 exist if and only if there is a projective plane of order N.
The Fano plane, the projective plane over the field with two elements, is one of the simplest objects in Galois geometry.. Galois geometry (named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois field). [1]
The quotient map from the sphere onto the real projective plane is in fact a two sheeted (i.e. two-to-one) covering map. It follows that the fundamental group of the real projective plane is the cyclic group of order 2; i.e., integers modulo 2.
Hanfried Lenz gave a classification scheme for projective planes in 1954, [6] which was refined by Adriano Barlotti in 1957. [7] This classification scheme is based on the types of point–line transitivity permitted by the collineation group of the plane and is known as the Lenz–Barlotti classification of projective planes.
If P is a finite set, the projective plane is referred to as a finite projective plane. The order of a finite projective plane is n = k – 1, that is, one less than the number of points on a line. All known projective planes have orders that are prime powers. A projective plane of order n is an ((n 2 + n + 1) n + 1) configuration. The smallest ...
The projective plane of order 3 has 13 points and 13 lines, each containing 4 points. The Mathieu groupoid can be visualized as a sliding block puzzle by placing 12 counters on 12 of the 13 points of the projective plane.
If any of the lines is removed from the plane, along with the points on that line, the resulting geometry is the affine plane of order 2. The Fano plane is called the projective plane of order 2 because it is unique (up to isomorphism). In general, the projective plane of order n has n 2 + n + 1 points and the same number of lines; each line ...
A similar construction, starting from the projective plane of order 3, produces the affine plane of order 3 sometimes called the Hesse configuration. An affine plane of order n exists if and only if a projective plane of order n exists (however, the definition of order in these two cases is not the same). Thus, there is no affine plane of order ...