Search results
Results from the WOW.Com Content Network
The electromotive force generated by motion is often referred to as motional emf. When the change in flux linkage arises from a change in the magnetic field around the stationary conductor, the emf is dynamically induced. The electromotive force generated by a time-varying magnetic field is often referred to as transformer emf.
electric current: ampere: A = C/s = W/V A J electric current density: ampere per square metre A/m 2: A⋅m −2: U, ΔV; Δϕ; E, ξ potential difference; voltage; electromotive force: volt: V = J/C kg⋅m 2 ⋅s −3 ⋅A −1: R; Z; X electric resistance; impedance; reactance: ohm: Ω = V/A kg⋅m 2 ⋅s −3 ⋅A −2: ρ resistivity: ohm ...
The direction of the electromotive force is given by Lenz's law. The laws of induction of electric currents in mathematical form were established by Franz Ernst Neumann in 1845. [21] Faraday's law contains the information about the relationships between both the magnitudes and the directions of its variables.
A simple electric circuit made up of a voltage source and a resistor. Here, =, according to Ohm's law. An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances ...
In other media, any stream of charged objects (ions, for example) may constitute an electric current. To provide a definition of current independent of the type of charge carriers, conventional current is defined as moving in the same direction as the positive charge flow. So, in metals where the charge carriers (electrons) are negative ...
"That is, that the resistance, the ratio of the applied electromotive force (or voltage) to the current, "does not vary with the current strength."The qualifier "in a given state" is usually interpreted as meaning "at a constant temperature," since the resistivity of materials is usually temperature dependent.
The inverse relationship between force per unit current and of a linear motor has been demonstrated. To translate this model to a rotating motor, one can simply attribute an arbitrary diameter to the motor armature e.g. 2 m and assume for simplicity that all force is applied at the outer perimeter of the rotor, giving 1 m of leverage.
An example of this is in the case of copper and iron, the electrons first flow along the iron from the hot junction to the cold one. The electrons cross from the iron to the copper at the hot junction, and from the copper to the iron at the cold junction. This property of electromotive force production is known as the Seebeck effect.