enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson limit theorem - Wikipedia

    en.wikipedia.org/wiki/Poisson_limit_theorem

    In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions. [1] The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem

  3. Infinite divisibility (probability) - Wikipedia

    en.wikipedia.org/wiki/Infinite_divisibility...

    Thus, for example, if the uniform asymptotic negligibility (u.a.n.) condition is satisfied via an appropriate scaling of identically distributed random variables with finite variance, the weak convergence is to the normal distribution in the classical version of the central limit theorem.

  4. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  5. Poisson's equation - Wikipedia

    en.wikipedia.org/wiki/Poisson's_equation

    Siméon Denis Poisson. Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics.For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate the corresponding electrostatic or gravitational (force) field.

  6. Renewal theory - Wikipedia

    en.wikipedia.org/wiki/Renewal_theory

    For example, if the renewal process is modelling the numbers of breakdown of different machines, then the holding time represents the time between one machine breaking down before another one does. The Poisson process is the unique renewal process with the Markov property , [ 2 ] as the exponential distribution is the unique continuous random ...

  7. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    The binomial distribution converges towards the Poisson distribution as the number of trials goes to infinity while the product np converges to a finite limit. Therefore, the Poisson distribution with parameter λ = np can be used as an approximation to B( n , p ) of the binomial distribution if n is sufficiently large and p is sufficiently small.

  8. M/M/∞ queue - Wikipedia

    en.wikipedia.org/wiki/M/M/%E2%88%9E_queue

    An M/M/∞ queue is a stochastic process whose state space is the set {0,1,2,3,...} where the value corresponds to the number of customers currently being served. Since, the number of servers in parallel is infinite, there is no queue and the number of customers in the systems coincides with the number of customers being served at any moment.

  9. Talk:Poisson limit theorem - Wikipedia

    en.wikipedia.org/wiki/Talk:Poisson_limit_theorem

    It's been a little hard for me to understand why this example is an application of the theorem, so I thought I could suggest an extra sentence explaining a intermediate step of reasoning for the not-so-much-into-the-field people like me. Something like: " Suppose that in an interval [0, 1000], 500 points are placed randomly.