enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive linear functional - Wikipedia

    en.wikipedia.org/wiki/Positive_linear_functional

    The significance of positive linear functionals lies in results such as Riesz–Markov–Kakutani representation theorem. When V {\displaystyle V} is a complex vector space, it is assumed that for all v ≥ 0 , {\displaystyle v\geq 0,} f ( v ) {\displaystyle f(v)} is real.

  3. Gelfand–Naimark–Segal construction - Wikipedia

    en.wikipedia.org/wiki/Gelfand–Naimark–Segal...

    Any positive linear functionals on dominated by is of the form = (), for some positive operator in () ′ with in the operator order. This is a version of the Radon–Nikodym theorem . For such g {\displaystyle g} , one can write f {\displaystyle f} as a sum of positive linear functionals: f = g + g ′ {\displaystyle f=g+g'} .

  4. State (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/State_(functional_analysis)

    A proof can be sketched as follows: Let be the weak*-compact set of positive linear functionals on with norm ≤ 1, and () be the continuous functions on . A {\displaystyle A} can be viewed as a closed linear subspace of C ( Ω ) {\displaystyle C(\Omega )} (this is Kadison 's function representation ).

  5. Order dual (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Order_dual_(functional...

    In mathematics, specifically in order theory and functional analysis, the order dual of an ordered vector space is the set ⁡ ⁡ where ⁡ denotes the set of all positive linear functionals on , where a linear function on is called positive if for all , implies () [1] The order dual of is denoted by +.

  6. Linear form - Wikipedia

    en.wikipedia.org/wiki/Linear_form

    Continuous linear functionals have nice properties for analysis: a linear functional is continuous if and only if its kernel is closed, [14] and a non-trivial continuous linear functional is an open map, even if the (topological) vector space is not complete.

  7. Riesz–Markov–Kakutani representation theorem - Wikipedia

    en.wikipedia.org/wiki/Riesz–Markov–Kakutani...

    Finally, is positive if and only if the measure is positive. One can deduce this statement about linear functionals from the statement about positive linear functionals by first showing that a bounded linear functional can be written as a finite linear combination of positive ones.

  8. Positive linear operator - Wikipedia

    en.wikipedia.org/wiki/Positive_linear_operator

    A linear function on a preordered vector space is called positive if it satisfies either of the following equivalent conditions: . implies (); if then () (). [1]; The set of all positive linear forms on a vector space with positive cone , called the dual cone and denoted by , is a cone equal to the polar of .

  9. Functional analysis - Wikipedia

    en.wikipedia.org/wiki/Functional_analysis

    These modes are eigenfunctions of a linear operator on a function space, a common construction in functional analysis. Functional analysis is a branch of mathematical analysis , the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, inner product , norm , or topology ) and the ...