enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydrogen production - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_production

    Dark fermentation reactions do not require light energy, so they are capable of constantly producing hydrogen from organic compounds throughout the day and night. Photofermentation differs from dark fermentation because it only proceeds in the presence of light. Electrohydrogenesis is used in microbial fuel cells to produce hydrogen from ...

  3. High-temperature electrolysis - Wikipedia

    en.wikipedia.org/wiki/High-temperature_electrolysis

    High-temperature electrolysis schema. Decarbonization of Economy via hydrogen produced from HTE. High-temperature electrolysis (also HTE or steam electrolysis, or HTSE) is a technology for producing hydrogen from water at high temperatures or other products, such as iron or carbon nanomaterials, as higher energy lowers needed electricity to split molecules and opens up new, potentially better ...

  4. Steam reforming - Wikipedia

    en.wikipedia.org/wiki/Steam_reforming

    The United States produces 9–10 million tons of hydrogen per year, mostly with steam reforming of natural gas. [13] The worldwide ammonia production, using hydrogen derived from steam reforming, was 144 million tonnes in 2018. [14] The energy consumption has been reduced from 100 GJ/tonne of ammonia in 1920 to 27 GJ by 2019. [15]

  5. Hydrogen - Wikipedia

    en.wikipedia.org/wiki/Hydrogen

    Hydrogen is a chemical element; it has symbol H and atomic number 1. It is the lightest element and, at standard conditions, is a gas of diatomic molecules with the formula H 2, sometimes called dihydrogen, [11] hydrogen gas, molecular hydrogen, or simply hydrogen. It is colorless, odorless, [12] non-toxic, and highly combustible.

  6. Hydrogen economy - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_economy

    The concept of a society that uses hydrogen as the primary means of energy storage was theorized by geneticist J. B. S. Haldane in 1923. Anticipating the exhaustion of Britain's coal reserves for power generation, Haldane proposed a network of wind turbines to produce hydrogen and oxygen for long-term energy storage through electrolysis, to help address renewable power's variable output. [15]

  7. Water splitting - Wikipedia

    en.wikipedia.org/wiki/Water_splitting

    Using electricity produced by photovoltaic systems potentially offers the cleanest way to produce hydrogen, other than nuclear, wind, geothermal, and hydroelectric. Again, water is broken down into hydrogen and oxygen by electrolysis, but the electrical energy is obtained by a photoelectrochemical cell (PEC) process.

  8. Liquid hydrogen - Wikipedia

    en.wikipedia.org/wiki/Liquid_hydrogen

    Liquid hydrogen also has a much higher specific energy than gasoline, natural gas, or diesel. [12] The density of liquid hydrogen is only 70.85 kg/m 3 (at 20 K), a relative density of just 0.07. Although the specific energy is more than twice that of other fuels, this gives it a remarkably low volumetric energy density, many fold lower.

  9. Sulfur–iodine cycle - Wikipedia

    en.wikipedia.org/wiki/Sulfur–iodine_cycle

    The sulfur–iodine cycle (S–I cycle) is a three-step thermochemical cycle used to produce hydrogen. The S–I cycle consists of three chemical reactions whose net reactant is water and whose net products are hydrogen and oxygen. All other chemicals are recycled. The S–I process requires an efficient source of heat.

  1. Related searches how to find phase amounts of light pollution energy needed to produce hydrogen

    hydrogen production cyclenuclear hydrogen production
    hydrogen production methodshydrogen heat capacity chart
    hydrogen production processes