Search results
Results from the WOW.Com Content Network
DNA synthesis occurs in all eukaryotes and prokaryotes, as well as some viruses. The accurate synthesis of DNA is important in order to avoid mutations to DNA. In humans, mutations could lead to diseases such as cancer so DNA synthesis, and the machinery involved in vivo, has been studied extensively throughout the decades. In the future these ...
Unlike DNA synthesis in living cells, artificial gene synthesis does not require template DNA, allowing virtually any DNA sequence to be synthesized in the laboratory. It comprises two main steps, the first of which is solid-phase DNA synthesis, sometimes known as DNA printing. [1]
Oligonucleotide synthesis is the chemical synthesis of relatively short fragments of nucleic acids with defined chemical structure ().The technique is extremely useful in current laboratory practice because it provides a rapid and inexpensive access to custom-made oligonucleotides of the desired sequence.
Synthetic genome is a synthetically built genome whose formation involves either genetic modification on pre-existing life forms or artificial gene synthesis to create new DNA or entire lifeforms. [ 1 ] [ 2 ] [ 3 ] The field that studies synthetic genomes is called synthetic genomics .
A DNA construct is an artificially-designed segment of DNA borne on a vector that can be used to incorporate genetic material into a target tissue or cell. [1] A DNA construct contains a DNA insert, called a transgene , delivered via a transformation vector which allows the insert sequence to be replicated and/or expressed in the target cell.
Along the DNA template, primase intersperses RNA primers that DNA polymerase uses to synthesize DNA from in the 5′→3′ direction. [1] Another example of primers being used to enable DNA synthesis is reverse transcription. Reverse transcriptase is an enzyme that uses a template strand of RNA to synthesize a complementary strand of DNA.
AMV-RT synthesizes a complementary DNA strand (cDNA) from the RNA template once the primer is annealed. [10] RNase H then degrades the RNA template and the other primer binds to the cDNA to form double stranded DNA, which RNA polymerase uses to synthesize copies of RNA. [11]
Insert the fragments of DNA into vectors that were cut with the same restriction enzyme. Use the enzyme DNA ligase to seal the DNA fragments into the vector. This creates a large pool of recombinant molecules. These recombinant molecules are taken up by a host bacterium by transformation, creating a DNA library. [9] [10]