Search results
Results from the WOW.Com Content Network
It is also called propositional logic, [2] statement logic, [1] sentential calculus, [3] sentential logic, [4] [1] or sometimes zeroth-order logic. [ b ] [ 6 ] [ 7 ] [ 8 ] Sometimes, it is called first-order propositional logic [ 9 ] to contrast it with System F , but it should not be confused with first-order logic .
A number of axiomatizations of classical propositional logic are due to Łukasiewicz. A particularly elegant axiomatization features a mere three axioms and is still invoked to the present day. He was a pioneer investigator of multi-valued logics ; his three-valued propositional calculus , introduced in 1917, was the first explicitly ...
With the advent of algebraic logic, it became apparent that classical propositional calculus admits other semantics.In Boolean-valued semantics (for classical propositional logic), the truth values are the elements of an arbitrary Boolean algebra; "true" corresponds to the maximal element of the algebra, and "false" corresponds to the minimal element.
Stoic logic is the system of propositional logic developed by the Stoic philosophers in ancient Greece. It was one of the two great systems of logic in the classical world. It was largely built and shaped by Chrysippus , the third head of the Stoic school in the 3rd-century BCE.
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]
Download as PDF; Printable version ... Philosophy of logic is the area of philosophy that studies the ... Propositional logic is only concerned with truth in virtue ...
In propositional logic, hypothetical syllogism is the name of a valid rule of inference (often abbreviated HS and sometimes also called the chain argument, chain rule, or the principle of transitivity of implication). The rule may be stated:
First-order logic includes the same propositional connectives as propositional logic but differs from it because it articulates the internal structure of propositions. This happens through devices such as singular terms, which refer to particular objects, predicates , which refer to properties and relations, and quantifiers, which treat notions ...