enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_mean

    The arithmetic mean of a set of observed data is equal to the sum of the numerical values of each observation, divided by the total number of observations. Symbolically, for a data set consisting of the values , …,, the arithmetic mean is defined by the formula:

  3. Mean - Wikipedia

    en.wikipedia.org/wiki/Mean

    The mean of a set of observations is the arithmetic average of the values; however, for skewed distributions, the mean is not necessarily the same as the middle value (median), or the most likely value (mode). For example, mean income is typically skewed upwards by a small number of people with very large incomes, so that the majority have an ...

  4. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:

  5. QM-AM-GM-HM inequalities - Wikipedia

    en.wikipedia.org/wiki/QM-AM-GM-HM_Inequalities

    There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.

  6. Average - Wikipedia

    en.wikipedia.org/wiki/Average

    Average of chords. In ordinary language, an average is a single number or value that best represents a set of data. The type of average taken as most typically representative of a list of numbers is the arithmetic mean – the sum of the numbers divided by how many numbers are in the list.

  7. Pythagorean means - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_means

    The study of the Pythagorean means is closely related to the study of majorization and Schur-convex functions. The harmonic and geometric means are concave symmetric functions of their arguments, and hence Schur-concave, while the arithmetic mean is a linear function of its arguments and hence is both concave and convex.

  8. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    The arithmetic mean of a population, or population mean, is often denoted μ. [2] The sample mean x ¯ {\displaystyle {\bar {x}}} (the arithmetic mean of a sample of values drawn from the population) makes a good estimator of the population mean, as its expected value is equal to the population mean (that is, it is an unbiased estimator ).

  9. Generalized mean - Wikipedia

    en.wikipedia.org/wiki/Generalized_mean

    In mathematics, generalized means (or power mean or Hölder mean from Otto Hölder) [1] are a family of functions for aggregating sets of numbers. These include as special cases the Pythagorean means ( arithmetic , geometric , and harmonic means ).