Search results
Results from the WOW.Com Content Network
The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods give identical results. This example shows that, for the special case of a simple linear regression where there is a single x-variable that has values 0 and 1, the t-test gives the same results as the linear regression. The ...
Compute from the observations the observed value t obs of the test statistic T. Decide to either reject the null hypothesis in favor of the alternative or not reject it. The Neyman-Pearson decision rule is to reject the null hypothesis H 0 if the observed value t obs is in the critical region, and not to reject the null hypothesis otherwise. [31]
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.
The program can generate graphs of the relationships between power, sample size and the detectable alternative hypothesis. It can plot graphs of any two of these variables while holding the third constant. Linear or logarithmic axes may be used and multiple curves can be plotted on each graph.
Most frequently, t statistics are used in Student's t-tests, a form of statistical hypothesis testing, and in the computation of certain confidence intervals. The key property of the t statistic is that it is a pivotal quantity – while defined in terms of the sample mean, its sampling distribution does not depend on the population parameters, and thus it can be used regardless of what these ...
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter.Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false.
We define two hypotheses the null hypothesis, and the alternative hypothesis. If we design the test such that α is the significance level - being the probability of rejecting when is in fact true, then the power of the test is 1 - β where β is the probability of failing to reject when the alternative is true.