Search results
Results from the WOW.Com Content Network
The repeating periodicity of blocks of 2, 6, 10, and 14 elements within sections of periodic table arises naturally from total number of electrons that occupy a complete set of s, p, d, and f orbitals, respectively, though for higher values of quantum number n, particularly when the atom bears a positive charge, energies of certain sub-shells ...
While periodic travelling waves have been known as solutions of the wave equation since the 18th century, their study in nonlinear systems began in the 1970s. A key early research paper was that of Nancy Kopell and Lou Howard [1] which proved several fundamental results on periodic travelling waves in reaction–diffusion equations.
The wave function of fermions, including electrons, is antisymmetric, meaning that it changes sign when two electrons are swapped; that is, ψ(r 1, r 2) = −ψ(r 2, r 1), where the variables r 1 and r 2 correspond to the first and second electrons, respectively. Since the absolute value is not changed by a sign swap, this corresponds to equal ...
In a crystal structure of metallic solids, the free electron model (zero potential, φ e = 0) for the behavior of valence electrons is used. However, in a periodic lattice (crystal), there is periodic crystal potential, so the electron Hamiltonian becomes [19] = + (), where m e is the electron mass, and the periodic potential is expressed as φ ...
A Bloch wave function (bottom) can be broken up into the product of a periodic function (top) and a plane-wave (center). The left side and right side represent the same Bloch state broken up in two different ways, involving the wave vector k 1 (left) or k 2 (right). The difference (k 1 − k 2) is a reciprocal lattice vector. In all plots, blue ...
The energy and momentum of electrons in solids can be described by introducing Bloch waves into the Schrödinger equation with applying periodic boundary conditions. Solving this eigenvalue equation, one obtains sets of solutions that are describing bands of energies that are allowed to the electrons: the electronic band structure. The latter ...
An electromagnetic wave, in contrast, must have a transverse component, but may also be partially longitudinal. Waves can be further classified by the oscillating species. In most plasmas of interest, the electron temperature is comparable to or larger than the ion temperature. This fact, coupled with the much smaller mass of the electron ...
The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]