Search results
Results from the WOW.Com Content Network
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The ideal gas law is the equation of state for an ideal gas, given by: = where P is the pressure; V is the volume; n is the amount of substance of the gas (in moles) T is the absolute temperature; R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature.
The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases. The combination of several empirical gas laws led to the development of the ideal gas law.
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
Download as PDF; Printable version; In other projects ... Pages in category "Gas laws" ... Ideal gas law; M. Magic number (chemistry) P.
Download as PDF; Printable version; In other projects ... Pages in category "Ideal gas" ... Ideal gas law; S.
The ideal gas law can be recast into the formula: p ρ = T m {\displaystyle {\frac {p}{\rho }}={\frac {T}{m}}} By substituting this ratio in the Newton–Laplace law, the expression of the sound speed into an ideal gas as function of temperature is finally achieved.
the ideal gas law in molar form, which relates pressure, density, and temperature: P = ρ R s p e c i f i c T {\displaystyle \ P=\rho R_{\rm {specific}}T} at each geopotential altitude, where g is the standard acceleration of gravity , and R specific is the specific gas constant for dry air (287.0528J⋅kg −1 ⋅K −1 ).