Search results
Results from the WOW.Com Content Network
The paradox is that a static, infinitely old universe with an infinite number of stars distributed in an infinitely large space would be bright rather than dark. [1] A view of a square section of four concentric shells. To show this, we divide the universe into a series of concentric shells, 1 light year thick.
Bentley's paradox (named after Richard Bentley) is a cosmological paradox pointing to a problem occurring when Newton's theory of gravitation is applied to cosmology. Namely, if all the stars are drawn to each other by gravitation, they should collapse into a single point.
The argument fails in the case that the universe might be shaped like the surface of a hypersphere or torus. (Consider a similar fallacious argument that the Earth's surface must be infinite in area: because otherwise one could go to the Earth's edge and throw a javelin, proving that the Earth's surface continued wherever the javelin hit the ...
Many attempts to generate scenarios for closed timelike curves have been suggested, and the theory of general relativity does allow them in certain circumstances. Some theoretical solutions in general relativity that contain closed timelike curves would require an infinite universe with certain features that our universe does not appear to have, such as the universal rotation of the Gödel ...
Sean M. Carroll argues that the theorem only applies to classical spacetime, and may not hold under consideration of a complete theory of quantum gravity. He added that Alan Guth, one of the co-authors of the theorem, disagrees with Vilenkin and believes that the universe had no beginning.
An important parameter in fate of the universe theory is the density parameter, omega (), defined as the average matter density of the universe divided by a critical value of that density. This selects one of three possible geometries depending on whether Ω {\displaystyle \Omega } is equal to, less than, or greater than 1 {\displaystyle 1} .
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Assuming that the universe is eternal, a question arises: How is it that thermodynamic equilibrium has not already been achieved? [4]This theoretical paradox is directed at the then-mainstream strand of belief in a classical view of a sempiternal universe, whereby its matter is postulated as everlasting and having always been recognisably the universe.