enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Green's law - Wikipedia

    en.wikipedia.org/wiki/Green's_law

    Propagation of shoaling long waves, showing the variation of wavelength and wave height with decreasing water depth.. In fluid dynamics, Green's law, named for 19th-century British mathematician George Green, is a conservation law describing the evolution of non-breaking, surface gravity waves propagating in shallow water of gradually varying depth and width.

  3. Dispersion (water waves) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(water_waves)

    Using another normalization for the same frequency dispersion relation, the figure on the right shows that for a fixed wavelength λ the phase speed c p increases with increasing water depth. [1] Until, in deep water with water depth h larger than half the wavelength λ (so for h/λ > 0.5), the phase velocity c p is independent of the water ...

  4. Airy wave theory - Wikipedia

    en.wikipedia.org/wiki/Airy_wave_theory

    Water depth is classified into three regimes: [8] Visualization of deep and shallow water waves by relating wavelength to depth to bed. deep water – for a water depth larger than half the wavelength, h > ⁠ 1 / 2 ⁠ λ, the phase speed of the waves is hardly influenced by depth (this is the case for most wind waves on the sea and ocean ...

  5. Tide - Wikipedia

    en.wikipedia.org/wiki/Tide

    The two high waters on a given day are typically not the same height (the daily inequality); these are the higher high water and the lower high water in tide tables. Similarly, the two low waters each day are the higher low water and the lower low water. The daily inequality is not consistent and is generally small when the Moon is over the ...

  6. Wave shoaling - Wikipedia

    en.wikipedia.org/wiki/Wave_shoaling

    The phase velocity c p (blue) and group velocity c g (red) as a function of water depth h for surface gravity waves of constant frequency, according to Airy wave theory. Quantities have been made dimensionless using the gravitational acceleration g and period T, with the deep-water wavelength given by L 0 = gT 2 /(2π) and the deep-water phase ...

  7. Swell (ocean) - Wikipedia

    en.wikipedia.org/wiki/Swell_(ocean)

    Breaking swell waves at Hermosa Beach, California. A swell, also sometimes referred to as ground swell, in the context of an ocean, sea or lake, is a series of mechanical waves that propagate along the interface between water and air under the predominating influence of gravity, and thus are often referred to as surface gravity waves.

  8. Shallow water equations - Wikipedia

    en.wikipedia.org/wiki/Shallow_water_equations

    Shallow-water equations can be used to model Rossby and Kelvin waves in the atmosphere, rivers, lakes and oceans as well as gravity waves in a smaller domain (e.g. surface waves in a bath). In order for shallow-water equations to be valid, the wavelength of the phenomenon they are supposed to model has to be much larger than the depth of the ...

  9. Wave setup - Wikipedia

    en.wikipedia.org/wiki/Wave_setup

    From this equilibrium the wave setup can be calculated. The maximum increase in water level is then: = where H b is the wave height at the breaker line and γ is the breaker index (wave height/water depth ratio at breaking for individual waves, usually γ = 0.7 - 0.8). Incidentally, due to this phenomenon, a small reduction in water level ...

  1. Related searches variation of g with depth of water is caused by large waves called the land

    water depth dispersion chartwater dispersion wikipedia
    water dispersion chartwater dispersion relationship
    depth of water dispersion