Search results
Results from the WOW.Com Content Network
However, some of the early successes of molecular engineering have come in the fields of immunotherapy, synthetic biology, and printable electronics (see molecular engineering applications). Molecular engineering is a dynamic and evolving field with complex target problems; breakthroughs require sophisticated and creative engineers who are ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Some of the most common examples of transport analysis in engineering are seen in the fields of process, chemical, biological, [1] and mechanical engineering, but the subject is a fundamental component of the curriculum in all disciplines involved in any way with fluid mechanics, heat transfer, and mass transfer.
Atomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions, at the scale of one or a few atoms [1] and energy scales around several electron volts. [2]: 1356 [3] The three areas are closely interrelated. AMO theory includes classical, semi-classical and quantum treatments.
Flory–Stockmayer theory is a theory governing the cross-linking and gelation of step-growth polymers. [1] The Flory–Stockmayer theory represents an advancement from the Carothers equation , allowing for the identification of the gel point for polymer synthesis not at stoichiometric balance. [ 1 ]
In 1923, Peter Debye and Erich Hückel reported the first successful theory for the distribution of charges in ionic solutions. [7] The framework of linearized Debye–Hückel theory subsequently was applied to colloidal dispersions by S. Levine and G. P. Dube [8] [9] who found that charged colloidal particles should experience a strong medium-range repulsion and a weaker long-range attraction.
His Ph.D. work was the first doctoral degree on the topic of molecular nanotechnology and his thesis, "Molecular Machinery and Manufacturing with Applications to Computation", was published (with minor editing) as Nanosystems: Molecular Machinery, Manufacturing and Computation (1992), which received the Association of American Publishers award ...
Reptation theory describes the effect of polymer chain entanglements on the relationship between molecular mass and chain relaxation time. The theory predicts that, in entangled systems, the relaxation time τ is proportional to the cube of molecular mass, M: τ ∝ M 3. The prediction of the theory can be arrived at by a relatively simple ...