enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    Infinite number of uniform tilings in ... 6: 9: 5: 2{3} +3{4} Truncated tetrahedron: 3.6.6 ... ⁠ 5 / 3 ⁠ (3) ⁠ 5 / 2 ⁠ have some faces occurring as coplanar ...

  3. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    Alternatively, if you expand each of five cubes by moving the faces away from the origin the right amount and rotating each of the five 72° around so they are equidistant from each other, without changing the orientation or size of the faces, and patch the pentagonal and triangular holes in the result, you get a rhombicosidodecahedron ...

  4. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Face, a 2-dimensional element; Cell, a 3-dimensional element; Hypercell or Teron, a 4-dimensional element; Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak.

  5. Pentahedron - Wikipedia

    en.wikipedia.org/wiki/Pentahedron

    There is a third topological polyhedral figure with 5 faces, degenerate as a polyhedron: it exists as a spherical tiling of digon faces, called a pentagonal hosohedron with Schläfli symbol {2,5}. It has 2 ( antipodal point ) vertices, 5 edges, and 5 digonal faces.

  6. Johnson solid - Wikipedia

    en.wikipedia.org/wiki/Johnson_solid

    A Johnson solid is a convex polyhedron whose faces are all regular polygons. [1] Here, a polyhedron is said to be convex if the shortest path between any two of its vertices lies either within its interior or on its boundary, none of its faces are coplanar (meaning they do not share the same plane, and do not "lie flat"), and none of its edges are colinear (meaning they are not segments of the ...

  7. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids ), and four regular star polyhedra (the Kepler–Poinsot polyhedra ), making nine regular polyhedra in all.

  8. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    For example, a 7-simplex is (1,1) 8 = (1,2,1) 4 = (1,4,6,4,1) 2 = (1,8,28,56,70,56,28,8,1). The number of 1-faces (edges) of the n -simplex is the n -th triangle number , the number of 2-faces of the n -simplex is the ( n − 1) th tetrahedron number , the number of 3-faces of the n -simplex is the ( n − 2) th 5-cell number, and so on.

  9. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    They are defined by three properties: each face is either a pentagon or hexagon, exactly three faces meet at each vertex, and they have rotational icosahedral symmetry. They are not necessarily mirror-symmetric; e.g. GP(5,3) and GP(3,5) are enantiomorphs of each other. A Goldberg polyhedron is a dual polyhedron of a geodesic polyhedron.