Search results
Results from the WOW.Com Content Network
Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]
A hidden Markov model describes the joint probability of a collection of "hidden" and observed discrete random variables.It relies on the assumption that the i-th hidden variable given the (i − 1)-th hidden variable is independent of previous hidden variables, and the current observation variables depend only on the current hidden state.
For example, a series of simple observations, such as a person's location in a room, can be interpreted to determine more complex information, such as in what task or activity the person is performing. Two kinds of Hierarchical Markov Models are the Hierarchical hidden Markov model [2] and the Abstract Hidden Markov Model. [3]
The Viterbi algorithm is a dynamic programming algorithm for obtaining the maximum a posteriori probability estimate of the most likely sequence of hidden states—called the Viterbi path—that results in a sequence of observed events. This is done especially in the context of Markov information sources and hidden Markov models (HMM).
In statistics, a hidden Markov random field is a generalization of a hidden Markov model. Instead of having an underlying Markov chain, hidden Markov random fields have an underlying Markov random field. Suppose that we observe a random variable , where .
Layered hidden Markov model This page was last edited on 30 March 2013, at 04:46 (UTC). Text is available under the Creative Commons Attribution-ShareAlike 4.0 ...
The Forward algorithm will then tell us about the probability of data with respect to what is expected from our model. One of the applications can be in the domain of Finance, where it can help decide on when to buy or sell tangible assets. It can have applications in all fields where we apply Hidden Markov Models.
The hierarchical hidden Markov model (HHMM) is a statistical model derived from the hidden Markov model (HMM). In an HHMM, each state is considered to be a self-contained probabilistic model. More precisely, each state of the HHMM is itself an HHMM. HHMMs and HMMs are useful in many fields, including pattern recognition. [1] [2]