Search results
Results from the WOW.Com Content Network
Vacuum permittivity, commonly denoted ε 0 (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric constant, or the distributed capacitance of the vacuum.
Another common term encountered for both absolute and relative permittivity is the dielectric constant which has been deprecated in physics and engineering [2] as well as in chemistry. [ 3 ] By definition, a perfect vacuum has a relative permittivity of exactly 1 whereas at standard temperature and pressure , air has a relative permittivity of ...
μ 0 ≈ 12.566 × 10 −7 H/m is the magnetic constant, also known as the permeability of free space, ε 0 ≈ 8.854 × 10 −12 F/m is the electric constant, also known as the permittivity of free space, c is the speed of light in free space, [9] [10] The reciprocal of Z 0 is sometimes referred to as the admittance of free space and ...
Historically, the constant μ 0 has had different names. In the 1987 IUPAP Red book, for example, this constant was called the permeability of vacuum. [12] Another, now rather rare and obsolete, term is "magnetic permittivity of vacuum". See, for example, Servant et al. [13] Variations thereof, such as "permeability of free space", remain ...
The permeability of vacuum (also known as permeability of free space) is a physical constant, denoted μ 0. The SI units of μ are volt-seconds per ampere-meter, equivalently henry per meter. Typically μ would be a scalar, but for an anisotropic material, μ could be a second rank tensor.
In the frequency region above ultraviolet, permittivity approaches the constant ε 0 in every substance, where ε 0 is the permittivity of the free space. Because permittivity indicates the strength of the relation between an electric field and polarisation, if a polarisation process loses its response, permittivity decreases.
In physics, the fine-structure constant, also known as the Sommerfeld constant, commonly denoted by α (the Greek letter alpha), is a fundamental physical constant which quantifies the strength of the electromagnetic interaction between elementary charged particles.
In free space the wave impedance of plane waves is: = (where ε 0 is the permittivity constant in free space and μ 0 is the permeability constant in free space). Now, since = = (by definition of the metre),