Search results
Results from the WOW.Com Content Network
Other common double bonds are found in azo compounds (N=N), imines (C=N), and sulfoxides (S=O). In a skeletal formula, a double bond is drawn as two parallel lines (=) between the two connected atoms; typographically, the equals sign is used for this. [1] [2] Double bonds were introduced in chemical notation by Russian chemist Alexander Butlerov.
In a polar covalent bond, one or more electrons are unequally shared between two nuclei. Covalent bonds often result in the formation of small collections of better-connected atoms called molecules, which in solids and liquids are bound to other molecules by forces that are often much weaker than the covalent bonds that hold the molecules ...
The functionality of a monomeric structural unit is defined as the number of covalent bonds which it forms with other reactants. [1] A structural unit in a linear polymer chain segment forms two bonds and is therefore bifunctional, as for the PET structural units above. Other values of functionality exist.
Hydrogen has only one valence electron, but it can form bonds with more than one atom. In the bifluoride ion ([HF 2] −), for example, it forms a three-center four-electron bond with two fluoride atoms: [F−H F − ↔ F − H−F] Another example is the three-center two-electron bond in diborane (B 2 H 6).
Theories of chemical structure were first developed by August Kekulé, Archibald Scott Couper, and Aleksandr Butlerov, among others, from about 1858. [4] These theories were first to state that chemical compounds are not a random cluster of atoms and functional groups, but rather had a definite order defined by the valency of the atoms composing the molecule, giving the molecules a three ...
Each bond consists of a pair of electrons, so if t is the total number of electrons to be placed and n is the number of single bonds just drawn, t−2n electrons remain to be placed. These are temporarily drawn as dots, one per electron, to a maximum of eight per atom (two in the case of hydrogen), minus two for each bond.
A covalent bond, also known as a molecular bond, involves the sharing of electrons between two atoms. Primarily, this type of bond occurs between elements that fall close to each other on the periodic table of elements, yet it is observed between some metals and nonmetals. This is due to the mechanism of this type of bond.
[1] [2] [3] For the number of chemical bonds of atoms, the term "valence" is used (Fig. 1). For both atoms and larger species, the number of bonds may be specified: divalent species can form two bonds; a trivalent species can form three bonds; and so on. [4]