enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    The log-normal distribution has also been associated with other names, such as McAlister, Gibrat and Cobb–Douglas. [4] A log-normal process is the statistical realization of the multiplicative product of many independent random variables, each of which is positive.

  3. Geometric Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Geometric_Brownian_motion

    A stochastic process S t is said to follow a GBM if it satisfies the following stochastic differential equation (SDE): = + where is a Wiener process or Brownian motion, and ('the percentage drift') and ('the percentage volatility') are constants.

  4. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    The EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and a maximization (M) step, which computes parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates are then ...

  5. Random walk - Wikipedia

    en.wikipedia.org/wiki/Random_walk

    A Wiener process is the scaling limit of random walk in dimension 1. This means that if there is a random walk with very small steps, there is an approximation to a Wiener process (and, less accurately, to Brownian motion). To be more precise, if the step size is ε, one needs to take a walk of length L/ε 2 to approximate a Wiener length of L ...

  6. Leimkuhler–Matthews method - Wikipedia

    en.wikipedia.org/wiki/Leimkuhler–Matthews_method

    This stochastic differential equation has solutions (denoted () at time ) distributed according to () ⁡ (()) in the limit of large-time, making solving these dynamics relevant in sampling-focused applications such as classical molecular dynamics and machine learning. Given a time step >, the Leimkuhler-Matthews update scheme is compactly ...

  7. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    For an AR(1) process with a positive , only the previous term in the process and the noise term contribute to the output. If φ {\displaystyle \varphi } is close to 0, then the process still looks like white noise, but as φ {\displaystyle \varphi } approaches 1, the output gets a larger contribution from the previous term relative to the noise.

  8. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    In machine learning, normalization is a statistical technique with various applications. There are two main forms of normalization, namely data normalization and activation normalization . Data normalization (or feature scaling ) includes methods that rescale input data so that the features have the same range, mean, variance, or other ...

  9. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.